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Van Hove Self-Correlation Function of a Hard-Disk 
Fluid: Enskog Theory and Computer Simulation 
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The van Hove self-correlation function in a hard-disk fluid is analyzed using the 
Lorentz-Enskog kinetic equation and the kinetic model method of solution. 
Numerical convergence of the model solutions is demonstrated and accurate 
model results are used to interpret molecular dynamics simulation data at finite 
wave numbers. It is found that at about 60% of freezing density the error in the 
Enskog theory can be mainly attributed to an underestimate of the effective 
self-diffusion coefficient, but at 90% freezing density a theory which treats 
correlated collisions is needed to describe the width behavior of the single- 
particle density fluctuation spectrum. 
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1. INTRODUCTION 

The dynamics of single particle motions in a simple fluid is described by 
the van Hove self-correlation function Gs(r, t) which is the time-dependent 
spatial distribution of a tagged particle. (l) While Gs(r,t ) is related to the 
velocity autocorrelation function ~,vv(t), a knowledge of ~vv(t) is not suffi- 
cient to completely determine Gs(r,t). Thus, through G, one has the 
possibility of studying spatial correlation effects not directly present in 
~vv(t) or its time integral, the self-diffusion coefficient D. 
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The hard-disk fluid plays an important role in the theory of liquids 
and gases ever since the discovery of the nonexponential long-time decay of 
time correlation functions. (2~ For this system the velocity autocorrelation 
function has been studied extensively by molecular dynamics simula- 
tion, (2'3~ and considerable theoretical analysis also has been carried out .  (4'5) 

On the other hand, there exists no theoretical discussion or computer 
simulation data on the self-correlation function of a hard-disk fluid in the 
literature. 

The purpose of this paper is to investigate the Enskog kinetic theory 
description of the self-correlation function. This description is expected to 
be a good approximation in the experimentally accessible time and wave- 
number regimes at moderate fluid densities, but at sufficiently high density 
it is expected to break down because the effects of correlated collisions will 
become important and these are not treated in the Lorentz-Enskog kinetic 
equation. We first consider the kinetic model method of analyzing the 
kinetic equation and examine the accuracy of a single relaxation time 
approximation. Then by comparing the numerical solutions with new 
molecular dynamics simulation data, we are able to delineate the limita- 
tions of the Lorentz-Enskog theory at high densities. In a separate work we 
have carried out a similar study of the density fluctuations and related 
space-dependent time correlation functions and have found the generalized 
Enskog kinetic equation to be valid up to at least A / A  o = 3, where A is 
the area of the fluid system and A 0 is the area at close packed. (6~ The 
conclusion which emerges from both studies is that the Enskog theory is 
valid at densities up to about half the solidification density, and that for 
more dense fluids a theory which also treats dynamically correlated colli- 
sions is needed. 

2. KINETIC, EQUATION AND SOLUTION 

We consider a system of hard disks of diameter a and mass m at a 
density n. We are interested in the dynamical properties of a tagged particle 
whose position and momentum will be donated by r 0 and P0, respectively. 
Its phase-space correlation function is defined as 

~(12, t) = (f(1, t)l f(2)) (la) 

where f(1) = 6(r - r0)a(p - Po) is the phase space density, and the bracket 
denotes an equilibrium average (A I A ) =  (SA*6A) of the fluctuation 8A 
= A - (A).  The Fourier and Laplace transform of ~(12,t) is defined by 

= ifoO~dteiZtfdrl2e-i"'r'2eo(lZ, t ), Imz > 0 (lb) q, pp.(q, z) 

The correlation function ~ obeys a kinetic equation which may be derived 
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in a similar way as before(6): 

[(z - q.  v)Spp + Cp~(q, z) ]q, op,(q, z) = - Xpp' (2a) 

The equal time phase-space correlation Xpp,= q0(p)6pp, is given in terms of 
the Maxwellian velocity distribution eg(p)= ( 2 ~ r m T ) - % x p ( - p 2 / 2 m T ) .  
The effects of particle interactions are described by the generalized collision 
operator Cpp,(q, z), which has two parts of different physical significance: 

(2b) Cpp,(q, z) = Tpp, + Mpp,(q, z) 

= -ig(o)nofdPfdpodp, w(po)W(p,)O(Vol" e)(Vo, "P) Tp., 

X 6(p - p0)[8(p' - p~) - 8 ( p ' -  P0)] (2c) 

The Lorentz-Enskog operator Tpp, describes uncorrelated binary collisions 
while Mpp,(q, z) accounts for collision sequences involving more than two 
particles. In Eq. (2c) p~' = P0 - (P01 " •)• is the momentum of the tagged 
particle after the collision, ~ = r / I t  I denotes a unit vector and g(a) is the 
pair correlation at contact. 

An exact expression may be written down for Mpp,(q, z), but we will 
not need it here. Instead, we are interested in the solution of the approxi- 
mate kinetic equation, the Lorentz-Enskog equation, which is obtained 
from Eq. (2) by dropping Mpp,(q, z) completely. Note that Eq. (2) differs 
from the generalized Enskog kinetic equation discussed elsewhere (6) in that 
there is no mean-field term in Cpp, and the equal-time correlation Xpp,(q) is 
simpler. Also, the binary collision operator is not only frequency indepen- 
dent due to the instantaneous nature of hard-core collisions, but also wave 
number independent. 

To solve the kinetic equation, Eq. (2), the kinetic model method is 
employed. (7) A complete orthonormal set of momentum states ]k), k = 1, 
2 . . . .  , is chosen and the infinite-dimensional collision operator matrix 
C~k(q,z ) is replaced by a finite N • N matrix with the remainder approxi- 
mated by a single diagonal element Cik(q , z )= a(q,z)Sik for i , k  > N,  with 
a ( q , z )  = ( N  + l lC(q , z ) [N  + 1). Then Eq. (2) may be solved easily and one 
obtains the N • N matrix equation 

~(q, z) = [ 1 - ~ (q, z)~(~ z')] - '~(0)(q, z,) (3) 

Here, q~(~ denotes the matrix of free particle correlations q~}~ 
= (il(q" v - z ) - ' l k ) ,  z'  --- z + a ( q , z )  and yik(q,z)  = Cik - a(q,z)6i~.  The 
set of momentum functions Ik), the general matrix elements of the 
Lorentz-Enskog operator, and the free-particle propagators are given ex- 
plicitly in the Appendix. Note that by increasing N the approximate 
solution Eq. (3) will converge to the exact solution of the kinetic equation, 
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Eq. (2). The rate of convergence will be shown numerically later. The 
kinetic model formulation also ensures that the correct free-particle limit is 
obtained. 

We are particularly interested in the incoherent dynamic structure 
factor or the van Hove self-correlation function, Ss(q,~o), which is the 
spectrum of density fluctuations of the tagged particle S,(q,o~)= qS~l(q,~o ) 
where the state I1 )=  1 denotes the density state and qhl(q,~0+ i0 )=  
q,'l](q,~0) ___ i~'l(q, o0. Its Fourier transform is the intermediate scattering 
function Fs( q, t) which can be generated by molecular dynamics simula- 
tion. 

We will first discuss several limiting cases. For the noninteracting 
system the density correlation function is .~(0) "ell (q, z) = (~r/2)l/Z(qvo)7] 
w(z/,[2qvo), where w(x) is the plasma dispersion function and v 0 = 
( T / m )  1/2 is the thermal velocity. This limit will be approached at 
large wave numbers. The spectrum in this case is a Gaussian with 
half-width at half maximum c01/2(q) = ~ qv0(ln 2) 1/2. On the other hand, 
because of particle number conservation, one expects diffusive behav- 
ior for small wave numbers. It is then convenient to define a generalized 
diffusion constant D(q, z) by 

epll(q,z ) = _ 1 
z + q2D(q,z) (4) 

The zero wave number limit of D(q,z)  is related to the velocity autocorre- 
lation function 

~vv(Z) = i(~dteiZt(vy(t)[vy) = l imD(q ,z )  (5) 
J0 q->0 

The zero-frequency limit defines the diffusion constant D by lim~_~O~vv(Z ) 
--- iD, if the limit exists. If D is finite then the density fluctuation spectrum 
at small wave numbers is a Lorentzian with width ~i/2(q)= Dq 2. This is 
the case for the solution of the Lorentz-Enskog equation. 

One can also define a velocity relaxation kernel K(z) by 

vo 
q~vv(Z) = z + K(z)  (6) 

In first approximation one finds from Eq. (2a) K(z )=  iv, where v = 
2,/-~novog(o ) is the collision frequency. Thus, the single relaxation time 
approximation gives D o = v~/v. From Eq. (6) the corresponding ffvv(t) is a 
single exponential. (s) In general, K(z) for the Lorentz-Enskog equation will 
be frequency dependent since the velocity state is not an eigenfunction of 
the collision operator. But the frequency dependence is quite weak; for 
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example, in the second approximation one finds 

u2/32 
K(z) = iu + z +/p(43/32) (7) 

For the diffusion constant this implies D/D o = 1.024, while the exact result 
is D/D o = 1.02709 . . . .  In the nth approximation ~vv(t) is a sum of n 
exponentials. The n = 5 result has been given explicitly in the literature (3) 
and may be considered to be a sufficiently accurate solution of the 
Lorentz-Enskog equation for all purposes. 

We will not discuss the density fluctuation spectrum in the single 
relaxation time approximation. It may be written in the form of Eq. (4) 
with D(q, z) replaced by its free-particle approximation D(q, z)= D(~ 
z') with g ' =  z + iv. O) It is a reasonable interpolation between the free- 
particle limit at large wave numbers and the hydrodynamic limit discussed 
above at small wave numbers. Furthermore, in order to reproduce the 
correct diffusion constant D, the single relaxation time model can be 
modified by replacing p by 1,- Do/D. This approximation will be referred 
to as the Nelkin-Ghatak  (NG) model. (8) 

The short time expansion of Fs( q, t) for a hard-disk fluid is known up 
to the t4-term 

1 (qvot)2+ ~ (qvot)2(pt) r , (q, t )= l -  ~ 

1 (qv002[a( .02  3(qv002] + .  (8a  
4[ 

The first three terms are reproduced exactly by the Lorentz-Enskog equa- 
tion. For the collisional part of the fourth term, the single relaxation time 
approximation yields asR = 1, while the exact solution (1~ to the Lorentz-  
Enskog equation gives a E = 1.0316 . . . .  In general, the coefficient a in- 
volves the static three-particle correlation; the numerical result at low 
density is a = 1.0386 . . . .  (~0) The short time expansion of the velocity 
autocorrelation function is correspondingly 

,vv(t) = 1 - pt + �89 - .  �9 (8b) 

Since q~vv(t) has recently been studied extensively, (3) we will not discuss it 
further here. 

3. M O L E C U L A R  D Y N A M I C S  S I M U L A T I O N  

A molecular dynamics program for the simulation of hard-disk and 
hard-sphere fluids has been developed (11~ which is a modified version of 
the program constructed by Prueitt.(~2) Equation of state data for both two 
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Tab le  I. Ef fect ive Sel f -Di f fusion 
Coef f ic ients  of  Hard -D isk  Fluids 

A / A  o D'r/o 2 D/Do"  

5.0 0.866 1.09 
2.0 0.041 1.16 
1.4 0.0029 0.775 

a Do = [2nag(a)(czm/T)I/2] - I. 

and three dimensions were generated which are in agreement with the 
published results. (13) For hard disks the static structure factor S(q) was 
calculated at two densities, n* = na 2 = 0.578 ( A / A  o = 2) and 0.825 ( A / A  o 
= 1.4), and selected values of wave number. Also, for hard disks the 
velocity autocorrelation function and the mean square displacement (r2(t))  
were calculated at n* = 0.231, 0.578, and 0.825. Since our interest was not 
in the long-time behavior, no attempt was made to obtain data beyond the 
intermediate-time domain, t > 10-20~- for q~vv(t) and t > 50~ for (r2(t)),  
where ~-= l / t ,  is the Enskog mean collision time. We do not present the 
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5 I0 

A/A. 
Fig. 1. Density dependence of effective self-diffusion coefficient in a hard-disk fluid. D O is 

Enskog diffusion coefficient, and na z =  ( 2 / f 3 ) ( A / A o )  - l .  Present molecular dynamics  data  
are shown as closed circles. Other data, N = 108 (triangles), N = 500 (crosses), and infinite 
system extrapolation (open circle), are obtained by converting the three-dimensional molecular 
dynamics data 04) using the relation A / A  o = ( V / V o )  2/3. 
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results here since much more extensive and precise data have now been 
published. (3) It is interesting to remark, however, that the (r2(t)) data show 
a well-established linear behavior so that one can readily deduce an 
effective self-diffusion coefficient D e f  t from its slope, or equivalently (14) 

1 d (r2(t)) (9) D e f  t = 

We refer to the diffusion coefficient a s  D e f  t because the Green-Kubo 
expression for D diverges in two dimensions. (2-5) The values obtained from 
the present data are shown in Table I. It should be pointed out as a purely 
empirical observation that these values are quite consistent with the hard- 
sphere data in the literature, (14) as shown in Fig. l, if one simply scales the 
density according to A / A  o = (V/V0) 2/3, where V is the fluid volume and 
V 0 the volume at close packed. 

Us ing  the simulation trajectories at A / A  o = 2 and 1.4, we have gener- 
ated the intermediate scattering function Fs(q, t) at several q values. These 
will be compared to the kinetic model solutions in the next section to 
delineate more precisely the way in which Enskog theory breaks down at 
high densities. 

4. RESULTS AND DISCUSSIONS 

To obtain numerical results from the Lorentz-Enskog kinetic equation 
one need only specify the pair correlation function at contact g(a). We will 
use the empirical expression (15) 

l - 7~/16 ~3/64 
g ( o ) -  (1 - ~)2 (1 - ~)4 (10) 

Table II. Convergence of Kinetic 
Model (Order N) Solutions for 
S,(q, ~) for a Hard-Disk Fluid, 

A/Ao= 2 and qa=4 

N AN a 

2 7.9 
5 - 2 . 1  

9 - 0.7 

14 - 0.2 

20 - 0.06 

a AN ~ [ S , ( q ,  ~0 = 0 ) N  -- S, (q ,  ~o 
= 0)N=27 ] • lO0/Ss(q,o~ = 0 ) N = 2  7 is 
the m a x i m u m  dev ia t ion  (expressed in 
percent)  f rom the N = 27 k ine t ic  model  
solut ion.  
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where ~ = (~r/4)no 2 is the packing fraction, which agrees well with Monte 
Carlo results. For  a demonstration of the accuracy of the kinetic model 
solution the dynamic structure factor Ss( q, ~o) at A / A  o = 2 has been evalu- 
ated using kinetic models of various order N. Table II shows the conver- 
gence of the low-order solutions for the peak height of S,(q,~o) at an 
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\ .  
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Fig. 2. The van Hove self-correlation function F,(q,t) in a hard-disk fluid (A/Ao=2), 
N = 27 kinetic model solution (full curve), single relaxation time approximation (dashed 
curve), and molecular dynamics simulation data (circles). (a) qo = 3. (b) qo = 9. ~- is Enskog 
mean collision time. 
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intermediate value of dimensionless wave number qo since the deviations 
are smaller at small and large q. In Table II the model result for N = 27 
was assumed to be numerically converged. From this comparison one may 
conclude that the kinetic model with N -- 9 should be everywhere accurate 
to within 1% of the converged solution. 

We consider first the results for A / A  o = 2. The intermediate scattering 
function Fs(q, t) is shown in Fig. 2 at two values of q. In both cases there 
is quite good agreement between the molecular dynamics data and the 
more accurate kinetic model (N = 9) solution. It is seen that the short- 
time behavior is adequately described by any kinetic model, but the inter- 
mediate-time decay is sufficiently sensitive to discriminate against the single 
relaxation time approximation. The deficiency of the Enskog theory in 
predicting the effective self-diffusion coefficient apparently does not affect 
appreciably the decay of Fs(q, t). The direct influence of Def f will certainly 
vary with the density, qo value, and the time domain of decay. One 
generally expects the effect to be largest at high densities, where Def t 
deviates significantly from Do, small qa, where hydrodynamic characteris- 
tics manifest most strongly, and long times. It is interesting to note that the 
Nelkin-Ghatak model, which is the single relaxation time approximation 
combined with scaling the relaxation time to give the correct D, gives 
results numerically close to the kinetic model solution for N = 9. This 
implies a cancellation of the error associated with the incorrect D value 
against that associated with the inaccuracy of a low-order kinetic model 
approximation. 

The frequency spectrum Ss(q,~o ) is shown in Fig. 3 for A / A  o = 2 and 
qo = 6.1. Here, it is not so obvious that the more accurate kinetic model 
solution is in better agreement with the simulation data. This is due at least 
in part to the incorrect value of D. The importance of D on the line shape 
can be appreciated by examining the half-width at half-maximum o~1/2, as 
shown in Fig. 4. There is considerable difference between the NG model 
and the single relaxation time approximation results, the two models 
differing only in the value of D, D y c / D  o = 1.19. 

One can expect that at A / A  o = 1.4 the Enskog theory will be consider- 
ably less satisfactory than the foregoing results. As shown in Fig. 5, 
practically the entire decay of Fs( q, t) at qo = 3 is sensitive to the value of 
Def t except for the initial relaxation. As qo increases, there is a noticeable 
shift to longer times where the effect of Def t is still important (qo = 11) until 
at large wave numbers, for example, qo = 25, kinetic effects completely 
dominate the behavior of F,(q, t) and there is no longer any influence of 
D eft" 

The deficiency of the Enskog theory becomes apparent when the width 
of S~(q, w) is considered at A / A  o = 1.4. Figure 6 shows the simulation data 
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t o l "  

Fig. 3. Single-particle density fluctuation spectrum Ss(q, o~) in a hard-disk fluid ( A / A  o = 2) 
at qo = 6.1, N = 9 kinetic model solution (full curve), single relaxation time approximation 
(dashed curve), and simulation data (circles). 
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~0.8 

0 4 8 12 
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Fig. 4. Dimensionless half-width at half maximum of Ss( q, o~) in a hard-disk fluid ( A / A  o 
= 2), N = 9 kinetic model solution (full curve), single relaxation time approximation (SR), 
Nelkin-Ghatak model (NG), and simulation data (circles). 
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Fig. 5. The van Hove self-correlation function F~(q,t) in a hard-disk fluid ( A / A o =  1.4), 
N = 27 kinetic model solution (full curve), Ne lk in -Gha tak  model with D I D  o = 0.775 (dashed 
curve), single relaxation time approximation (longer dashed curve in (a)), and simulation data 
(circles). (a) qa = 3, (b) qa = 11, (c) qo = 25. 
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Fig. 6. Dimensionless half-width at half maximum of Ss( q, ~) in a hard-disk fluid (A/A o 
= 14), N = 9 kinetic model solution (full curve), single relaxation time approximation (dashed 
curve), Gaussian approximation (closed circles), and simulation data (open circles). 
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Fig. 7. Dimensionless peak height of Ss(q,r ) in a hard-disk fluid, N = 9 kinetic model 
solution (full curve), single relaxation time approximation and Nelkin-Ghatak model (dashed 
curve), and simulation data for A/Ao= 1.4 (open circles) and A/A o = 2 (closed circles). 
Limiting results are hydrodynamic behavior vo/qD (dashed curve A) and free particle 
behavior ( r / 2 )  1/a (dashed curve B). 
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which display a minimum in ~01/2 at qo~5, an effect that is entirely absent 
in the theoretical results. This behavior is well known in three-dimensional 
fluids with continuous potentials. (]) Its presence in a hard-core fluid further 
confirms the interpretation that the effect arises from strong spatial correla- 
tions between near neighbors. In Fig. 6 we also show the results corre- 
sponding to the Gaussian approximation which assumes 

Fs( q, t) = exp[ - q2(r2(t))/4] (11) 

Since this approximation does not lead to a minimum in ~ol/2, the width 
behavior can also be regarded as a higher-order effect beyond the second 
spatial moments of G, (r, t). It should be noted that in Fig. 6 the simulation 
data are normalized by Deft, whereas the kinetic theory results are normal- 
ized by D 0. With Deff/D o = 0.775 at A / A  o = 1.4, a comparison of calcula- 
tions and simulation with both normalized to the same D value would 
emphasize even more dramatically the inadequacy of the Enskog theory in 
a calculation without adjustable parameter. One can also discuss the peak 
height of Ss(q,o~) in a manner similar to Fig. 6. Figure 7 shows that the 
kinetic theory is able to provide a reasonable calculation of S,(q, 0), even 
though it is unable to describe ~0]/2. 
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APPENDIX 

Here we provide the explicit formulas for the complete orthonormal 
set of momentum functions and the general matrix elements of the 
Lorentz-Enskog collision operator and the free-particle correlation func- 
tions in this basis. The two-dimensional Sonine polynomial basis is de- 
fined (6) by 

~ NM( ~ ) = (-1)NcNMI~IML~NMI(~2) e'M~, 

N = 0, 1,2, . . . , M = 0, --- 1, +2,  . . . (A.1) 

with CNM = (N! / (N!  + [M[!)) ~/2, ~ = p(2mT) 1/2, ~'x = ~ sin% ~y = ~ cos~ 
and L~(x) are the Laguerre polynomials. They are normalized with respect 
to the scalar product: 

< NM [ N ' M ' )  = ( d~xt'~VM( ~ )cp ( ~ )XI~u,M,( ~ ) = (3NN,rMM, (A.2) 
J 
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where q) ( f )=  ( l /gr )exp(-~2)  is the Maxwellian velocity distribution. The 
matrix elements of the Lorentz-Enskog operator are defined by 

(NM[T~[N'M ') = -iv(2~.)l/2f -~ f d~od~1~(~o)~(~,)O(~o, " P) 

x - (A .3 )  

Here, v is the collision frequency and ~ = ~0 - (~017) p is the postcollision 
momentum of the tagged particle. The matrix elements may be easily 
obtained as a special case of the results previously derived. (6) Some general 
symmetry properties are helpful: 

(NM] TSIN'M ~) = (NMJ TSIN'M)SMM , (A.4a) 

(NM I TSIN'M ') = (N 'M '  I TSlNM) (A.nb) 

( g  - MITS[N ' -  M)  = (NMITS[N'M) (A.4c) 

where Eq. (A.4a) follows from rotational invariance. Because of Eq. (A.4c) 
we can assume M > 0 in the following. One finds 

(NMIT~]N'M) 

= iv(1)N+N'+M[ (N + M) '  (N' + M)! ] 1/2 
N! N'! H (+)(NN', M )  

with 

4m 2 
H(+)(NN"M) = ~ 4m - 7 ~  1 

= 2 ( _ i )  
nnP pp r 

• 

(A.5a) 

- -  K,,,(NN', M ) (A.5b) 

(n + n' + ]m + M])! l?(v + v' + Im] + 3 / 2 ) / F ( 3 / 2 )  

v! v ' !n!n ' ! (v + Iml)!(v' + Irn[)!(n + Irn + M[)!(n '  + [ m  + M[)! 

(A.Sc)  

with the summation restrictions 2(v + n) + Iml + Im + M I --- 2N + M and 
2 ( / +  n') + Iml + Im + ml  = 2N'  + m. 

The free-particle correlation functions are defined by 

r ~VM(~)CP(~)"t'N'M,(~) (A.6) 
<NM[~(~ d~ -(~T) = x 

where ~(~ = v~ qvoe~(~ z) and x = z / ~/2 qv o. Due to rotational invari- 
ance, the set of all correlation functions can be divided into a longitudinal 
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and a transverse part. We are interested here in the longitudinal part which 
is coupled to the density correlation, and therefore define the longitudinal 
Sonine polynomials by 

~[NM> for M = 0  
/ 

I N M > + = J  1 ( [ N M > + I N - M > )  for M > 0  (A.7) 
Lv2 

By expanding the Sonine-polynomials "PNM in terms of Hermite polynomi- 
als H~ we obtain the following results: 

+ ( N M  Iq,r176 + 

= dMM.(N! N'! (N  + M)r (N'  + M')! )1/2 
• ~ 2"' d(n,n 2 ]UM)g(n'ln'21U'M')O,,2,,2(x ) (8a) 

n, nl! 02! n'2! 

with 

[ ~  for M = M ' = 0  

dMM "= for M = 0  or M ' = 0  
for M # 0 ,  M ' ~ 0  

r ( (n  I + 1 ) / 2 ) / F ( 1 / 2 )  �9 F((n 2 + M + 1 ) / 2 ) / F ( 1 / 2 )  
g ' (ntn21NM) = (N + M)!  

(A.8b) 

• 2 '  ' 2 ' 2 '  

( n  2 + M -  1) \ 
- 2 ;1 ) (A.8c) 

n 2 + n~ 

% , , ( x )  = ) - 2 a(n2n ,,,3)go3(x) (A.Sd) 
n3 = In2- nll 

n2[ n~ ] 2 ( n2 + n'2- n3) /2 

A (n2nl ,n3) = ((n2 + ~2 - n3)/2)! ((n2 + n3 - nl) /2)!  ((hi + n3 - n2)/2)! 

(A.8e) 

and gn(x) are polynomials satisfying the same recursion relations as the 
Hermite polynomials Hn(x). 

g,+l(X) = 2xg,(x)  - 2ng,_l ,  n -- 1,2 . . . .  (A.Sf) 

with go(X) = O, gl(x) = - 1. In Eq. (A.8a) n 2 = 2N + M - n t, n 2, = 2N'  + 
M ' - n t ;  in Eq. (A.8c) 3F2 is a hypergeometric function(16); and in Eq. 
(A.8d)y(x)  = ivc~ w(x) is the free-particle density correlation given in terms 
of the plasma dispersion function (17) w(x). 



538 Leutheusser, Chou, and Yip 

REFERENCES 

1. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London, 
1976); J-P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980). 

2. B. J. Alder and T. E. Wainwright, Phys. Rev. Lett. 18:988 (1967); J. Phys. Soc. Jpn. Suppl. 
26:267 (1969); Phys. Rev. A 1:18 (1970); T. E. Wainwright, B. J. Alder, and D. M. Gass, 
Phys. Rev. A 4:233 (1971). 

3. J. J. Erpenbeck and W. W. Wood, Phys. Rev. A 26:1648 (1982). 
4. J. R. Dorfman and E. G. D. Cohen, Phys. Rev. Lett. 25:1257 (1970); Phys. Rev. A 6:726 

(1972), 12:292 (1975); M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. 
Lett. 25:1254 (1970); Phys. Rev. A 4:2055 (1971). See also, J. R. Dorfman, in Fundamental 
Problems in Statistical Mechanics, E. G. D. Cohen, ed. (North Holland, Amsterdam, 
1975), Vol. 3, p. 277; J. R. Dorfman, Physica 106A:77 (1981). 

5. Y. Pomeau and P. Resibois, Phys. Rep. 19:63 (1975). 
6. E. Leutheusser, S. Yip, E. J. Alder, and W. E. Alley, J. Stat. Phys. 35:503 (1983). 
7. E. P. Gross and E. A. Jackson, Phys. Fluids 2:432 (1959). 
8. M. Nelkin and A. Ghatak, Phys. Rev. 135A:4 (1964). 
9. S. Ranganathan and S. Yip, Physics 100A: 127 (1980). 

10. I. M. de Schepper, M. H. Ernst, and E. G. D. Cohen, J. Stat. Phys. 25:321 (1981). 
11. D-P. Chou, Engineer's thesis, M.I.T. (1980). 
12. M. L. Prueitt, Computer Simulation of Molecular Dynamics, Los Alamos Scientific 

Laboratory Report LA-4696 (1971). 
13. B. J. Alder and T. E. Wainwright, J. Chem. Phys. 33:1439 (1960); W. G. Hoover and B. J. 

Alder, Ibid. 46:686 (1967). 
14. B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53:3813 (1970). 
15. L. Verlet and D. Levesque, Mol. Phys. 46:969 (1982). 
16. M. Abramowitz and J. A. Stegun, Handbook of Mathematical Functions (Dover, New 

York, 1970). 


